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Dynamics of self-trapped beams with phase dislocation in saturable Kerr and quadratic
nonlinear media

Dmitry V. Skryabin* and William J. Firth
Department of Physics and Applied Physics, John Anderson Building, University of Strathclyde, 107 Rottenrow,

Glasgow, G4 0NG, Scotland
~Received 11 May 1998!

We present a detailed stability analysis of one- and two-ring solitary waves with central phase dislocation in
self-focusing saturable and quadratic nonlinear media. Varying parameters, we demonstrate transitions between
different filamentation scenarios. An analytical approach is developed for the study of filament dynamics after
ring breakup. Approximate expressions for the angular separation rate of filaments based on the conservation
of the angular momentum and on the conservation of the Hamiltonian are derived and compared. The stability
analysis and analytical results are tested by an extensive series of numerical simulations of the original models,
and good agreement is found.@S1063-651X~98!14609-3#
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I. INTRODUCTION

Solitary wave effects due to optical propagation in no
linear media have been a very active area of theoretical
experimental research ever since self-trapping of an op
beam due to nonlinear change of refractive index was p
dicted in the 1960s@1#. For review of the early works see
e.g.,@2,3#. The basic model that was studied is the nonlin
Schrödinger equation~NLS!, which can be derived from the
Maxwell equations for centrosymmetric nonlinear media
the quasioptical limit. The NLS is of great importance n
only in nonlinear optics but in most branches of nonline
science@2,3#.

Both bright and dark spatial solitary solutions of the on
dimensional~1D! NLS are also exact solutions of the NLS
two transverse dimensions~2D!, but both are subject to a
transverse modulational instability~MI ! which develops
along the second transverse coordinate@3,4#. This instability
results in breakup of a bright solitary stripe into a set
filaments in the self-focusing case@3#, while a vortex chain
forms from a dark solitary stripe in self-defocusing med
@4#. These vortices are dark holes, with a nested phase
location of orderl at their core, on a bright, stable, bac
ground which is infinite~in theory! or sufficiently wide~in
practice!, where l is any positive or negative integer. A
vortices of order two or more~i.e., u l u>2) are unstable,
breaking up into vortices withu l u51, which are stable for
topological reasons. Optical vortices are themselves a sub
of great interest: for an excellent recent review of dark s
tons and vortices see@5#.

During recent years propagation and MI of bright a
dark solitary waves have been extensively studied not onl
the NLS context, i.e., in Kerr-like media, but also in th
quadratically nonlinear and photorefractive media; see, e
@6–11#. Linear propagation of the beams with phase dislo
tions and the related angular momentum effects have
been a very active area of research@12,13#.

*Electronic address: dmitry@phys.strath.ac.uk
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The present paper deals with 2D propagation of elec
magnetic waves in self-focusing saturable and in quadr
nonlinear media. Bright solitary waves decaying monoto
cally with distance from the axis~ground states! are the most
important solitary solutions in these media, but they do
exhaust the set of self-trapped solutions. Considering
NLS with pure cubic nonlinearity Gagnon and Pare´ @14# built
two remarkable sets of analytic solutions. These sets are
logs of Hermite-Gaussian and Laguerre-Gaussian mode
the propagation equation in linear media@15#. In a certain
limit these ‘‘nonlinear modes,’’ which generally depend o
the longitudinal coordinate, transform into self-trapped so
tions @14#. Several types of solitary waves reported by d
ferent authors, e.g., with a bright central spot and one
more radial nodes@16#, ‘‘doughnut’’ solutions with a nested
phase dislocation@17#, the ‘‘dipole’’ solution @18#, and solu-
tions with both radial and azimuthal nodes@19#, are appar-
ently special cases of these ‘‘nonlinear modes’’ built by Ga
non and Pare´. It is natural to expect that analogs of the
solutions can exist in models that in certain limits are clo
to the NLS. Indeed, solutions with abright central spot and
radial nodes have been studied in saturable@20,21# and qua-
dratic nonlinear media@22–24#. Solutions with adarkcentral
spot and nested phase dislocation have been also report
both saturable@25–29# and quadratic@22,23,28# media.

The stability of these solutions is a nontrivial issue b
cause the standard stability criterion for the ground sta
@20# is only a necessary condition for the stability of highe
order solutions with nodes, and has no relevance to MI
was first shown for saturable nonlinearity@21# that many-
ring solutions with a bright central spot are stable with
spect to purely radial perturbations but unstable with resp
to azimuthally dependent perturbations, showing breakup
their rings into filaments. Similar solutions in quadratic no
linear media show not only symmetry-breaking azimuth
instability, in analogy with saturable media, but also a no
symmetry-preserving decay scenario, which is absent for
ground-state quadratic solitons@24#.

Note that, while the MIs of the ring and stripe solita
waves have much in common, there is an important diff
ence between them. Stripes typically have a continuum
3916 © 1998 The American Physical Society
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PRE 58 3917DYNAMICS OF SELF-TRAPPED BEAMS WITH PHASE . . .
unstable eigenmodes spanning a finite range of wave n
bers. In contrast rings have a discrete set of unstable ei
modes because of the phase periodicity condition.

Our special interest here is in self-trapped solutions w
phase dislocation surrounded by one or more bright rin
Breakup of these rings into filaments has been reporte
@23,25–29#. Existence of these solutions in quadratic nonl
ear media and rigorous stability analysis for both satura
and quadratic media were reported by us in@28#. In this work
we study the filament dynamics after the breakup~dynamics
here and below means evolution inz as the beam propa
gates!. This dynamics is strongly affected by the fact th
due to the phase dislocation, these beams have nonzer
bital angular momentum. Like free Newtonian particles, fi
ments fly off tangential to the initial ring, vividly demon
strating conservation of orbital angular momentum in th
motion @28#.

Experimental observations of filamentation of the fin
beams with a nested phase dislocation has been recent
ported for the self-focusing saturable@30,31# and photore-
fractive @11# media. The spatial profiles of the input beam
used in these experiments did not correspond to self-trap
solutions but we believe that the dynamics of filaments st
ied in @28# and elaborated below can provide valuable phy
cal insight and reflects key features underlying evolut
from more general initial conditions. This conclusion is su
ported by similarities between the numerical simulations
Torner and Petrov@32# in which they observed breakup i
quadratic nonlinear media of input Laguerre-Gaussian mo
with phase dislocation, and the evolution of the correspo
ing self-trapped solutions; see below and@23,28#.

Note that the solutions discussed above are assumed
linearly polarized in the transverse plane. For the Maxw
equations for a purely azimuthal field propagating in Ke
like media the existence of a family of many-ring solutio
with a dark central spot@33# and its azimuthal instability@34#
have been reported. The model equation studied is like
NLS, but with an additional term of the formr 22 (r is the
radial coordinate! argumenting the usual transverse Lapla
ian operator. This model has some formal resemblance to
case of a scalar field with a singly charged vortex, but
analogy has not been developed by these authors, an
will not pursue it here.

This paper is an expansion and extension of developm
of our initial work @28#, and is organized as follows. Th
next two sections are devoted to a detailed stability anal
of one- and two-ring stationary solitary waves with pha
dislocations, analyzing both saturable and quadratic non
ear media. All these waves are propagation-unstable, br
ing up into filaments, and the physically interesting featu
lie in the mechanism of filamentation, and the dynamics
the daughter filaments. By varying relevant parameters o
a wide range, we demonstrate transitions between diffe
filamentation scenarios, and a rich variety of output patte
We anticipate that input beams that are in some sense c
to these higher-order solitons will show the same classe
filamantation behavior. In the last section we develop an a
lytical approach to the study of filament dynamics after
breakup. We derive two different analytical expressions
the velocity of the filaments in the transverse plane. On
based on the conservation of the angular momentum, w
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the other is derived using the conservation of the Ham
tonian. Both formulas give reasonably good quantitative p
dictions for the velocities, the formula based on angular m
mentum being particularly effective. Both formulas giv
important insight into the underlying physics of the bea
breakup. The stability analysis and analytical results
complemented by an extensive series of numerical sim
tions of the original models, which verifies their predictio
and gives detailed quantitative information on the evolut
of beams carrying angular momentum in nonlinear opti
media.

II. SELF-TRAPPED BEAMS WITH PHASE DISLOCATION
IN SATURABLE MEDIA

A. Model and stationary solutions

The evolution of the slowly varying electric field enve
lope E in the nonlinear media is governed by the equat
~see, e.g.,@30#!

2ik]ZE1]X
2E1]Y

2E12k
v0

c
nNL~ I !E50, ~1!

Z and X,Y are the longitudinal and transverse coordinat
v0 is the carrier frequency,k5n0v0 /c is the carrier wave
number in the medium,n0 is the ~linear! refractive index,
andc the velocity of light in vacuum. The field is scaled suc
that I 5uEu2 is the intensity, andnNL(I ) is the intensity de-
pendent part of the refractive index. The form ofnNL de-
pends on the medium: e.g., for a Kerr mediumnNL5n2I . In
most media the index change shows some form of satura
For example, in a two-level medium excited well off res
nance the nonlinear index can be described bynNL5n2I /(1
1I /I sat), with I sat the saturation intensity. This is the mod
we will use in the present paper. Such a medium is s
focusing n2.0 ~or more generallydnNL /dI.0) and self-
defocusing in the opposite situation.

We now rescale our variables so as to reduce Eq.~1! to
the dimensionless form

i ]zE1 1
2 ¹W '

2 E1 f ~ uEu2!E50 ~2!

through the following substitutions:Z5zld , X5wx, Y
5wy, E5EAI satl nl / l d, where l d5kw2 and l nl
5c/(v0un2uI sat) are the diffraction and nonlinear lengths,w

is a characteristic transverse length scale,¹W '5 iW]x1 jW]y .
We will concentrate henceforth on the model of the se
focusing saturable nonlinearity

f ~ uEu2!5
uEu2

11auEu2
, a5

l nl

l d
, ~3!

Herea is a saturation parameter, and clearly the Kerr limit
simply given bya50. For this reason, and also for comp
tational convenience, we retaina as a scaling paramete
even though it can clearly be scaled away.

It is well known, and qualitatively clear, that under a
appropriate balance between diffractive stretching and n
linear focusing (l d; l nl) the electromagnetic radiation can b
self-trapped forming a self-induced waveguide. Formally t
means that Eq.~2! has nondiffracting solutions of the form
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3918 PRE 58DMITRY V. SKRYABIN AND WILLIAM J. FIRTH
E~x,y,z!5A~x,y!eikz. ~4!

Here k has a sense of the eigenvalue of the correspond
waveguide mode, which many authors term as the nonlin
wave-vector shift. The transverse profileA(x,y) obeys

¹W '
2A52@k2 f ~ uAu2!#A. ~5!

Beam confinement demands exponential decay ofuAu at in-
finity, which requiresk.0. Multiplying Eq. ~5! by A* and
integrating the left-side by parts one gets

2E dxdyu¹W 'Au25E dxdy@k2 f ~ uAu2!#uAu2

.~k2maxf !E dxdyuAu2. ~6!

Since f ,a21, any self-trapped solutions of our model mu
have 0,k,a21.

Below we will concentrate on one particular class of se
trapped solutions of Eq.~5! namely, those with a phase sin
gularity at the center, which have the form

A~x,y!5A~r !eil u, ~7!

wherer 5Ax21y2, u is the polar angle, andA(r ) is the real
function obeying

d2A

dr2
1

1

r

dA

dr
2

l 2

r 2
A52@k2 f ~A2!#A, ~8!

Physicallyl must be an integer~there is no phase singularit
for l 50), while A(r ) must obey the following boundar
conditions:

r→0, A~r !→r u l uc0 ,
~9!

r→`, A~r !→
c`

Ar
e2rA2k,

wherec0,̀ are real constants. There is redundancy in Eq.~8!,
since eitherk or a can be scaled away. We prefer to ke
them both:a to provide transition to the pure cubic nonlin
earity andk to retain the traditional form of the Vakhitov
Kolokolov stability criterion@20# ~for more details see nex
subsection!.

Equation ~8! with boundary conditions~9! were solved
numerically using a second-order finite difference meth
We found that for any nonzero integerl one-, two- and
many-ring solutions with a central phase singularity exist
the entire region 0,k,a21; see above and@35#. Typical
radial profiles ofA for different values ofl are presented in
Fig. 1. While these profiles can obviously be approxima
by analytical techniques~see, e.g.,@14,27#! here we confine
ourselves to numerical solutions, which have, in princip
arbitrarily high accuracy.
g
ar

t

-

.

n

d

,

B. Stability

Having found these stationary solutions, their stability i
natural question to study. Consider small complex pertur
tions «(z,r ,u) of the stationary solution~7!,

E~z,r ,u!5@A~r !1«~z,r ,u!#eikz1 i l u. ~10!

The general solution of the linearized problem for« can be
expressed as a superposition of azimuthal Fourier mo
e6 iJu (J50,1,2, . . . ) with complex coefficients dependent o
r and z. Therefore looking for the exponentially growin
perturbations that characterize instability, we set

«~z,r ,u!5gJ
1~r !elJz1 iJu1gJ

2* ~r !elJ* z2 iJu ~11!

and obtain the following non-self-adjoint eigenvalue pro
lem:

ilJgW J5F L̂J
1 A2f 8

2A2f 8 2L̂J
2GgW J , ~12!

wheregW J5(gJ
1 ,gJ

2)T, f 85d f /dA2, and

L̂J
65

1

2F1

r

d

dr
r

d

dr
2

1

r 2
~ l 6J!2G2k1 f 1A2f 8.

Note that Eq.~12! is obviously valid forl 50, i.e., for the
solitary waves with finite intensity atr 50. It can be shown
that for l 50 perturbations proportional to cosJu and sinJu
are equivalent and can be treated independently. This
was implicitly used in Refs.@21,34#. Therefore the dimen-

FIG. 1. Plots of the field amplitudeA(r ) for l 51,2,3,k51, and
a50.1. ~a! One-ring and~b! two-ring solutions of Eq.~8!. The
labels in Figs. 1, 2 denotel values.
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sion of the eigenvalue problem in the space of real functi
can be reduced from 434 to 232 when l 50. This also
follows from the fact that ifl 50 then Eq.~12! has the solu-
tions gJ

256gJ
1* . The presence of a phase singularity d

stroys this symmetry property and cosine and sine pertu
tions cannot be decoupled.

The asymptotic behavior of the eigenvectorsgW J is

r→0, gJ
6~r !→r u l 6Jub0

6 ,
~13!

r→`, gJ
6~r !→

b`
6

Ar
e2rA2~k6 ilJ!,

where b0,̀
6 are complex constants and the branch of

square root in the exponent must be chosen such tha
unstable eigenfunctions are square integrable. The eigen
ues of the discrete spectrum corresponding to such ei
functions can lie anywhere in the complex plane outside
rays (ik,i`) and (2 ik,2 i`), which belong to the continu
ous spectrum with extended eigenfunctions. Unstable eig
modes have eigenvalues with RelJ.0. They must always
have a counterpart with RelJ,0 because of the Hamiltonia
nature of our problem; see Sec. IV.

Due to the phase (E→Eeif) and translational@E(x,y)
→E(x1dx,y1dy)# symmetries of the our model Eq.~12!
has neutrally stable modes forJ50,1, i.e., modes with zero
eigenvalues. They are

gW 0
~0!5F A

2AG , gW 1
~0!5F dA

dr
2

l

r
A

dA

dr
1

l

r
A
G . ~14!

Neutral modes are important for analytic approaches
stability problems of this type. Asymptotic techniques~see,
e.g.,@8#! can be used to show that the neutrally stable m
gW 0

(0) branches at the point]kQ50 giving instability of any
bound solution of Eq.~8! if

]kQ,0; ~15!

hereQ is the energy flux

Q5E dxdyuEu2. ~16!

Thus the standard stability criterion for the ground sta
@20# is also anecessarycondition for the stability of self-
trapped beams with a phase dislocation.

For pure Kerr media (a50) ]kQ50 and a collapse in-
stability is present@25#. The evolution of this collapse inz is
of polynomial type, therefore it can easily be suppressed
an exponential instability if there is one. This is indeed t
case in our situation due to the exponential instabilities
JÞ0 described below. In case of single-ring solutions w
lÞ0, which have no nodes forr .0, a variational approach
to the eigenvalue problem~12! can be applied in a manne
similar to that done in Refs.@20,34#. It shows that]kQ.0 is
alsosufficientfor stability againstsymmetry-preservingper-
turbations (J50). Plots of the energy vsk for the one-ring
s
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solutions are presented in Fig. 2. We conclude that the o
ring solitary waves are stable with respect toJ50 perturba-
tions in the saturable media. For many-ring solutions ther
no comparable approach, nor any simple criterion that is s
ficient for symmetry-preserving stability and numeric
checks are always necessary.

The above analytic criterion says nothing about stabi
againstsymmetry breakingperturbations, i.e., MI is not ex
cluded even where]kQ.0 holds. Azimuthal MI corre-
sponds to modes withJÞ0 having exponential growth, in
general leading toJ-fold intensity modulation around the
ring, breaking the cylindrical symmetry of the intensity
the stationary solution. ForJ51 we might hope for an ana
lytic result linked to theg1

(0) neutral mode, but asymptoti
expansion shows that this neutral mode is not linked to

FIG. 2. EnergyQ vs k for one-ring solutions withl 51,2,3 and
a50.2. Horizontal lines correspond to a pure Kerr medium,a
50.

FIG. 3. Growth rates of the unstable eigenmodes of the one-
solution vsa for k51. ~a! l 51, ~b! l 52. Here and in Figs. 4, 8, 13
15 numbers denoteJ values.
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3920 PRE 58DMITRY V. SKRYABIN AND WILLIAM J. FIRTH
appearance of any instability. However, this obviously do
not forbid the presence of instability for anyJÞ0 including
J51 and we are obliged to study the eigenvalue probl
~12! with a different method. There are several possible
merical approaches to solve such problems; see,
@21,36,37#. We chose to reduce Eq.~12! to an algebraic ei-
genvalue problem by replacing the differential operators w
the second-order finite differences. We apply zero bound
conditions for some large value ofr and appropriate condi
tions atr 50, as given in Eq.~13!. 200 to 300 grid points was
usually enough to get good precision. Zero boundary con
tions for larger is a potential source of problems becau
weakly decaying eigenvectors require large numbers of
points to maintain accuracy. However, we did not meet s
a situation in any of the investigations described in this
per. Furthermore, numerical results for the neutrally sta
modes were always in good agreement with Eqs.~14!.

Numerical analysis of symmetry-breaking perturbatio
(JÞ0) shows the presence of instabilities over a finite ran
of values ofJ in every case. The results for the one-rin
solutions with l 51,2,3, k51 and a50.1 were presented
earlier in Ref.@28#. Here we study in detail how variations o
the parameters and of the initial noise level influen
symmetry-breaking instabilities of the one-ring solita
waves withl 51,2 and two-ring wave withl 51. These cases
are typical of the breakup of ring stationary waves in sa
rable Kerr media that carry orbital angular momentum.

Let us first describe the one-ring solutions. Although, b
cause of the above-mentioned scaling, all possible situat
can in fact be captured by varying just one parameter
keeping the other fixed, for convenience and ease of in
pretation we plot the growth rates (RelJ) of the unstable
eigenmodes versus both parameters; see Figs. 3 and 4

FIG. 4. Growth rates vsk of the most unstable eigenmodes
the one-ring solution fora51. ~a! l 51, ~b! l 52.
s
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For

l 51 just three unstable eigenmodes (J51,2,3) appear, with
theJ52 mode dominating through the whole range ofa and
k. For l 52 either of the two modesJ53,4 can be dominan
depending on the parameter values. Generally the instab
gets stronger fora→0 and it is practically suppressed fo
a→1/k. Suppression of MI~of any nature! with increasing
saturation is a common phenomenon that has also bee
ported for the fundamental bright and dark solitons in sa
rable media@5,37#. Considering variations ofk, for k close
to 0 or to 1/a the instability is again practically suppresse
This is also typical for the symmetry-breaking instabilities
other kinds of the ring structures@21,27,34#.

We found that the unstable eigenvalues are gener
complex. If the instability for an eigenmode disappea
within the existence region of the solitary solution the ima
nary part of the correspondinglJ usually remains finite as its
real part vanishes. In particular this holds for the unsta
eigenmode withJ51, and it explains why instability for this
mode cannot be captured by asymptotic expansion near
neutral modegW 1

(0) .
We found that the radial profiles of the most unstab

eigenfunctions mainly concentrate around the rings of
stationary solutions; see Fig. 5. BecauseA(r ) is real, it is the
real part of the perturbations that determines the field am
tude modulation pattern that develops around an unst
ring. Therefore we expect the initially uniform ring will de
velop Jmax minima andJmax maxima on propagation, wher
Jmax is the azimuthal index of the perturbation eigenmo
with the maximal growth rate. As a consequence, the r
should break up intoJmax filaments. However, other eigen
modes, in particular those withJ5Jmax61, can have com-

FIG. 5. Real and imaginary parts of the maximally unsta
eigenmodes for one-ring solutions.~a! l 51, J52, a50.3, k51
and ~b! l 52, J54, a50.1, k51. Dashed lines mark the radia
profile of the self-trapped solutionA(r ).
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parable growth rates, which can affect the filamentation p
cess and make the output pattern depend somewhat o
particular realization of the initial noise.

To test the results of our stability analysis we perform
an extensive series of numerical simulations of Eq.~2! with
initial conditions in the form

E~r ,u!5$11s@qr~r ,u!1 iqi~r ,u!#%A~r !eil u, ~17!

whereqr ,i are real functions modeling Gaussian noise in
interval (21,1) ands is a constant. Simulation was done o
the polar grid with 128 and 2002300 grid points along the
angular and radial coordinates, respectively. The polar
prevents the numerical noise effects of discretizing a r
onto a rectangular grid from unduly influencing the numb
of filaments formed. For low noise level (s of the order 0.01
or less! the most unstable eigenmode was clearly domin
in the majority of simulations. Increasing the noise tos
;0.1 led to the occasional appearance ofJ5Jmax61 fila-
ments. In most of the simulations the filaments formed fr
the same ring had similar intensities. This suggests that
unstable eigenmode dominating at the beginning of the
stability suppresses all the others.@For an exception see Fig
6~b!.#

Examples of the breakup of one-ring solutions withl 51
into 2 and 3 filaments and withl 52 into 4, 5, and 3 fila-
ments are presented in Figs. 6 and 7. Parameters and lev
the initial noise are specified in the figure captions. There
excellent agreement between the predictions of the stab
analysis~see Fig. 3! and the results of these direct numeric
simulation of the original model.

In the case of a pure Kerr medium (a50) the exponential
growth of the symmetry-breaking perturbations should do
nate over the algebraic growth of the symmetry-preserv
collapse instability. In the simulations for the Kerr case
indeed first observed filamentation of the ring and sub
quently collapse of the filaments.

For the two-ring solitary solutions withl 51, we present
just the growth rates for the dominant eigenmodes versua;
see Fig. 8. All unstable eigenmodes can be naturally se
rated into two groups. The radial profiles of the eigenmo
from one group concentrate around the first ring and fr
the other around the second ring; see Fig. 9. Because of
each ring develops its own modulated pattern and break
into the different number of filaments. We present here~see
Fig. 10! results of numerical simulation fora50.05 ~when
J52 andJ56 modes dominate for the first and second rin
respectively! and for a50.6 with dominantJ52 andJ55
modes. Fora50.05 the first ring is more unstable and f
a50.6 the second ring is more unstable. For the latter s
ation the instability of the first ring is so weak that i
breakup did not occur within the propagation distance sim
lated.

The examples presented in Figs. 6, 7 and 10 show
filamentation happens over propagation distances from
eral to several tens of diffraction lengths. For small values
a and optimal initial energy, i.e., adjustingk to maximize
the instability, we were able to observe filamentation with
one or two diffraction lengths.

Finally, regarding the possibility of analytical study o
the stability with respect to symmetry-breaking perturbatio
-
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we suggest that a proper generalization of the averag
techniques described in@21# may be the most efficient way
to do it.

III. SELF-TRAPPED BEAMS WITH PHASE DISLOCATION
IN QUADRATIC MEDIA

The main qualitative features of the dynamics in quadra
media of self-trapped beams with phase dislocation are
same as in saturable media@28#. The latter model was elabo
rated in some detail in the previous section. In addition, s
bility in the ‘‘quadratic case’’ has been investigated not on
by us @28# but also by Torreset al. @23#. Therefore in this

FIG. 6. Breakup of the one-ring solution withl 51, k51. ~a!
a50.3, s50.01,z514; ~b! a50.1, s50.05,z57.
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FIG. 7. Breakup of the one-ring solution withl 52, k51. ~a!
a50.1, s50.005,z57; ~b! a50.1, s50.08, z54; ~c! a50.6, s
50.08,z526.
section we will present our results in somewhat compres
form, concentrating on gaps in the previous treatments
on differences from the saturable case.

A. Model and stationary solutions

The evolution of the slowly varying envelopes of the fu
damental (E1) and second harmonic (E2) electric fields in a
noncentrosymmetric crystal is governed by the followi
equations~see, e.g.,@7#!:

2ik1]ZE11]X
2E11]Y

2E11
v0

2

c2
x1E1* E 2e2 idkZ50,

~18!

2ik2]ZE21]X
2E21]Y

2E214
v0

2

c2
x2E 1

2eidkZ50,

wherev0 is the carrier frequency of the fundamental wav
k15k1(v0) and k25k2(2v0) are the wave vectors in th
medium,dk52k12k2 , x1,2 are proprtional to the relevan
elements of the nonlinear susceptibility tensor.

We reduce Eqs.~18! to dimensionless form

FIG. 8. Growth rates of selected unstable eigenmodes of
two-ring solution vsa for k51 andl 51. Dashed~full ! lines are for
the modes concentrated around the first~second! ring.

FIG. 9. Real and imaginary parts of the maximally unsta
eigenmodes for the two-ring solution.l 51, a50.05, k51. J52
andJ56 for the eigenmodes concentrated around the first and
ond ring, respectively. Dashed line: radial profile of the self-trapp
solutionA(r ).
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]zE11 1
2 ¹W '

2 E11E1* E250,
~19!

]zE21 1
4 ¹W '

2 E21
1

2
E1

25bE2 ,

through the following substitutions:Z5 l dz, X5wx, Y
5wy, E15E1k1c/( l dv0

2Ax1x2), E25E2eibz2k1c2/
( l dv0

2x1), where l d5k1w2 is the diffraction length,b
5dkld is the phase mismatch parameter. We neglected
tial walk-off effects, thereby implicitly supposing that th
walk-off length is the longest characteristic length in t
problem. We also made the natural choicek2 /k152 in Eq.
~19!.

We look for stationary solutions of Eqs.~19! in the form

Em5Am~r !eim~ lu1kz!, m51,2. ~20!

FIG. 10. Breakup of the two-ring solution withl 51 and k
51. ~a! a50.05,s50.005,z54; ~b! a50.6, s50.1, z526.
a-

The real amplitudesA1,2 obey the equations

d2A1

dr2
1

1

r

dA1

dr
2

l 2

r 2
A152~k2A2!A1 ,

~21!

d2A2

dr2
1

1

r

dA2

dr
2

4l 2

r 2
A254~2k1b!A222A1

2 .

Equations~21! have a family of ringlike solutions similar to
the case of the saturable medium. However, there is no c
dition similar to Eq.~6! and therefore just the requirement
exponential decay of the tails imposes a restriction on
parameter range where the solitary solutions can ex
namely,k.max(0,2b/2). Radial profiles ofA1,2 for one-
and two-ring cases are presented in Fig. 11. For the ma
ring solutions the fundamental fieldA1 has radial nodes bu
the second harmonicA2 always remains positive, thoug
having minima close to the zeros of the fundamental. F
largeb Eqs.~19! can be approximately reduced to the NL
equation for the fundamental field@6#, and for increasingb
the second harmonic tends to carry less and less of the
energy.A2 goes to zero faster thanA1 as r→0 because the
order of the phase singularity for the second harmonic
double that of the fundamental one.

One of the parametersk or b can be scaled away from
Eqs. ~21!. However, we like to keep them both:b is not a
very natural parameter for scaling because it can be posi
negative, or zero and we keepk because of its physical in

FIG. 11. Plots of the field amplitudesA1(r ) ~full lines! and
A2(r ) ~dashed lines! of ~a! one-ring and~b! two-ring solutions of
Eq. ~21! for l 51 ~thick lines!, l 53 ~thin lines!. k51 andb50.
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terpretation as a nonlinear wave vector correction, and a
as remarked above, because it is the natural paramete
investigation of stability.

B. Stability

The weaker character of the nonlinearity compared w
the Kerr case means there is no collapse in quadratic me
and instabilities are associated with exponential growth
perturbations. Considering small perturbations of the stat
ary solutions~20! in the form

em~z,r ,u!5gJm
1 ~r !elJz1 iJu1gJm

2 * ~r !elJ* z2 iJu, m51,2
~22!

we get the following non-self-adjoint eigenvalue problem

ilJgW J5F L̂J1
1 A2 A1 0

2A2 2L̂J1
2 0 2A1

A1 0 L̂J2
1 0

0 2A1 0 2L̂J2
2

G gW J , ~23!

wheregW J5(gJ1
1 ,gJ1

2 ,gJ2
1 ,gJ2

2 )T and

L̂J1
6 5

1

2F1

r

d

dr
r

d

dr
2

1

r 2
~ l 6J!2G2k,

L̂J2
6 5

1

4F1

r

d

dr
r

d

dr
2

1

r 2
~2l 6J!2G22k2b.

Pure imaginarylJ belonging to the continuous spectrum l
in the rays (iVc ,i`) and (2 iVc ,2 i`), where Vc
5min(k,2k1b). Neutrally stable eigenmodes forJ50 and
J51 are

gW 0
~0!5F A1

2A1

2A2

22A2

G , gW 1
~0!53

dA1

dr
2

l

r
A1

dA1

dr
1

l

r
A1

dA2

dr
2

2l

r
A2

dA2

dr
1

2l

r
A2

4 . ~24!

Symmetry-preserving (J50) perturbations of the one-rin
solutions are damped for

]kQ5]kE dxdy~ uE1u212uE2u2!.0, ~25!

whereQ is the energy flux. Representative plots ofQ vs k
are presented in Fig. 12. The instability for negativeb is
related to the existence for]kQ.0 of a pair of the eigen-
modes with purely imaginary eigenvalues~with opposite
o,
for

h
ia,
f

n-

signs! lying in the gap (2 iVc ,iVc). At the point]kQ50

these eigenmodes coincide with the neutral modegW 0
(0) and

for larger ubu appear again but with real eigenvalues of o
posite signs. For the one-ring solitary solution this is the o
route to a symmetry-preserving instability. We found tha
is always suppressed by stronger symmetry-breaking in
bilities; i.e., MI is always dominant in this case.

For cases whereA1(r ) changes its sign~i.e., two or more
rings!, the criterion~25! is just a necessary condition and w
found a new scenario of symmetry-preserving instability
appears in a manner similar to that which we have descri
for solutions with a bright central spot and one or more rin
@24#. However, we found that this instability may domina
the symmetry-breaking one only in a very narrow range ob
values, close to the boundary of the solitary wave existe
(b,21.9 for k51!. This contrasts with the case describ
in Ref. @24# ~zero angular momentum!, where the symmetry-
preserving scenario is a major factor for a significant reg
of b values.

Plots of the growth rates of the unstable eigenmodes
susb for the one-ring solutions withl 51,2 presented in Fig
13. In the limit ofb@1 the dominating mode is the same
the one in the saturable medium for small saturation valu
i.e, for a close to 0. The growth rates of the dominatin
eigenmodes increase linearly with increasingk; see Ref.
@23#. An example of the radial profiles of the components
the most unstable eigenmode is presented in Fig. 14.

The growth rates of the most unstable eigenmodes ve
b for the two-ring solution withl 51 are presented in Fig
15. ~These results are restricted tob.21.9 because for in-
creasingly negativeb the many-ring solitary solutions be
come very wide and extra care is needed in the stab
analysis.! Again the localization of the eigenmodes on t
rings suggests that during propagation any ring will break
into Jmax filaments, whereJmax shows maximum gain on tha
particular ring.

These predictions of our stability analysis are fully su
ported by simulations of Eqs.~19! and our comments in the
previous section about saturable media, e.g., about the in
ence of noise on the symmetry-breaking instabilities, are a
valid in quadratic media. An example of the break up of t
one-ring solution withl 52 to four filaments is presented i
Fig. 16.

FIG. 12. EnergyQ vs k for one-ring solutions withl 51 ~thick
lines! and l 52 ~thin lines!: b523 ~dash-dotted lines!, b50 ~full
lines!, andb53 ~dashed lines!.
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FIG. 13. Growth rates of the maximally unstable eigenmode
the one-ring solution vsb for k51. ~a! l 51, ~b! l 52.

FIG. 14. Real and imaginary parts of the maximally unsta
eigenmodes of the one-ring solution.l 51, J53, b50, k51. ~a! is
for the fundamental field and~b! is for the second harmonic
Dashed lines mark the radial profiles of the self-trapped solut
A1,2(r ).
IV. DYNAMICS OF FILAMENTS

As was shown above, self-trapped beams with a ph
dislocation at the center and with varying numbers of rin
exist as stationary solutions in both saturable and quadr
nonlinear media. They are unstable against symme
breaking perturbations, breaking up into a set of filame
during propagation. In this section we extend the analysis
the dynamics of the filaments outlined by us in@28#. This
analysis is based on the conservation laws. Given initial v
ues of the conserved quantities we show how to pre
featues of the trajectories of the filaments, and even how
estimate their number.

The conserved Hamiltonian and momenta, which are
sential to our present purposes, are introduced by a Lagr
ian reformulation of the problems. This also makes it po
sible to develop analogies between solitary waves
particles.

Equations~19! can be written as Euler-Lagrange equ
tions

]

]z

]L
]~]zEm* !

5
]L

]Em*
2 (

i 5x,y
] i

]L
]~] iEm* !

, m51,2, ~26!

where the Lagrangian densityL is

L5
i

2 (
m51,2

~Em* ]zEm2c.c.!2H. ~27!

The corresponding formulas for Eq.~2! can be obtained
by simply omitting the subscriptm, and this procedure will
be implied in most formulas below, exceptions being sta
explicitly.

In the above,H is the corresponding Hamiltonian densit
which for Eqs.~19! takes the form

H5 1
2 u¹W 'E1u21 1

4 u¹W 'E2u21buE2u22 1
2 ~E1

2E2* 1c.c.!,
~28!

while for Eq. ~2!

H5
1

2
u¹W 'Eu22E

0

uEu2
du f~u!. ~29!

f

e

,

FIG. 15. Growth rates of selected unstable eigenmodes of
two-ring solution vsb for k51 andl 51. Dashed~full ! lines are for
the modes concentrated around first~second! ring.
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Considering variations of the action integralS
5*z1

z2dz*dxdyL with respect to infinitesimal spatial transla

tions and rotations it can be shown that ifL is invariant
under these transformations the following two quantities
integrals of motion:

PW 5E dxdyPW , ~30!

LW 5E dxdyrW3PW . ~31!

Here rW5 iWx1 jWy and

FIG. 16. Breakup of the one-ring solution withl 52, b55, k
51, s50.05,z56. ~a! first harmonic,~b! second harmonic.
e

PW 52 (
m51,2

S ]L
]~]zEm!

¹W 'Em1c.c.D
5

1

2i (
m51,2

~Em* ¹W 'Em2c.c.!. ~32!

By definition PW is the linear momentum of the field,LW its
angular momentum, both expressed in terms ofPW , its linear
momentum density. Solitary wave solutions~7!, ~20! carry
zero linear momentum,PW 50, and nonzero angular momen
tum, uLW u5u l uQ0 , where Q0 are the energy invariants@see
Eqs.~16! and ~25!#, evaluated at these stationary solution

Equation ~31! for the angular momentum is just th
paraxial approximation for the optical orbital angular m
mentum per unit length@13#. The angular momentum carrie
by light beams has attracted much recent interest. It has b
predicted, and proved experimentally, that Laguer
Gaussian beams with azimuthal mode indexl carry orbital
angular momentuml\ per photon@12#. Frequency doubling
of such a beam has been shown@38# to generate a secon
harmonic with doubled azimuthal mode index 2l .

Both our models~2!, ~19! have the property of Galilean
invariance, e.g., in the quadratic medium:

~E1 ,E2 ,rW !→~E1eiF,E2e2iF,jW !, ~33!

where

F5vW ~rW2 1
2 vW z!, jW5rW2vW z, vW 5 iWvx1 jWvy ,

Under this transformation, a structure with zero linear m
mentum is boosted toPW 5QvW , therefore we can expec
analogies with Newtonian mechanics withQ playing the role
of mass. In particular, a fundamental soliton, which has
intrinsic angular momentum, will have orbital angular m
mentumLW 5rW3QvW about the origin, providedurWu is larger
than the soliton size. It follows that if the total field can b
regarded as a superposition of several separate loca
structures, e.g., solitons, we can expect the dynamics of th
structures~while they remain well localized! to be somewhat
similar to the dynamics of mechanical particles.

For simulation of the soliton dynamics we used a sp
step algorithm on a Cartesian grid with initial condition
obtained on the polar grid as described in Sec. II. Once
number of filaments is established the transition from o
grid to the other does not cause any significant loss of p
cision. As a further check, conservation of energy, Ham
tonian, and momenta was monitored during the simulatio

We found numerically that filaments formed due to t
azimuthal modulational instability do not diffract with propa
gation, but remain well localized and solitonlike. By supe
imposing images of the transverse intensity distribution
different z values we found thatthese filaments move ou
along tangents to the initial ring, carrying away its orbita
angular momentum; see Fig. 17 for the case of a saturab
medium. Several figures in Ref.@28# show this behavior for
both saturable and quadratic media and different values ol .

Because, once fully formed, the filaments seem to beh
like simple, free Newtonian particles, we now examin
whether their number and dynamics can be predicted on
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basis of the quasimechanical considerations. We cons
only the dynamics of the filaments formed after the break
of the one-ring structures. This is because an essential
dition to apply the ‘‘mechanical’’ approaches developed b
low is that the initial structures that undergo filamentati
have to produce during their evolution a set of well separa
filaments. Breakup of the many-ring solutions results gen
ally in strong interaction between filaments from differe
rings, and so is too complex to consider in the present
proach.

Let us represent the fields in the form

FIG. 17. Superimposed images of the transverse intensity di
bution at differentz values showing soliton trajectories in a sat
rable medium:a50.1, l 52. ~a! k51, ~b! k55, ~c! k58. Propa-
gation distance isDz510 for ~a!–~c!. Dotted lines mark the
intensity maxima of the initial ring profiles.
er
p
n-
-

d
r-
t
p-

Em. (
n51

N

Bmn~x,y!eivW nrW2~ i /2!uvW nu2z, m51,2; ~34!

herevW n have a sense of the ‘‘transverse velocities’’ of t
filaments. In other wordsvW n characterize the propagation d
rections of the solitary waves with respect toz axis.Bmn are
assumed to be bell-shaped complex functions characteri
the filaments, localized near the pointsrWn5vW nz. N is the
number of these filaments.

Substituting Eq.~34! into ~31! gives for the angular mo-
mentum

LW . (
n51

N E dxdy@rW3vW n#~ uB1nu212uB2nu2!. ~35!

To get Eq.~35! we neglected the overlap of the tails of th
filaments. We now assume thatrW can be replaced byrWn and
taken outside the integral, which then reduces toqn , the total
energy of the filament, and so Eq.~35! becomes, for well-
localized, well separated filaments

LW . (
n51

N

rWn3qnvW n . ~36!

This is just the angular momentum of a set of spinless Ne
tonian particles with masses given byqn . Under the same
assumptions,PW .(n51

N qnvW n , also the Newtonian form. If the
initial linear and angular momenta are wholly transferred
the daughter filaments, these expressions forLW and PW must
equate to those of the original ring soliton, i.e,uLW u5u l uQ0

andPW 50.
We now make another simplifying assumption, restricti

ourselves to cases where the breakup results in a set o
filaments with approximately equal energies. In this situat
conservation of the two momenta obliges the filaments
move with nearly equal speeds (uvW nu.v) along paths tangen
to the initial ring. Then in Eq.~36! we can estimate
urWn3vW nu5Rv, whereR characterizes the initial radius of th
solitary solution. In practice we assignedR by an energy-
weighted mean:

R5

E rdrr ~A1
212A2

2!

E rdr ~A1
212A2

2!

. ~37!

Finally, assuming that the entire energy and angular mom
tum are transferred to the filaments we get a very sim
expression for the escape speed:

v.
u l u
R

. ~38!

Plots ofR versusk for both our models are presented in Fi
18. Equation~38! holds, under the stated assumptions,
both saturable and quadratic media. Before comparing it w
numerical results, we consider an alternative Hamiltoni
based approach.

ri-
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Conservation of the HamiltonianH5*dxdyH suggests
another way to estimatev. Substitution of Eq.~34! into H,
under the same approximations as were used to get Eq.~36!,
gives

H0. (
n51

N

hn1
1

2(
n51

N

qnvn
2 . ~39!

Equation~39! links the initial HamiltonianH0 with the sum
of the ‘‘intrinsic’’ Hamiltonians hn of the individual fila-
ments calculated in their rest frames and of the ‘‘kinetic e
ergies’’ arising from their transverse motion, the latter ag
conforming to the particle analog.

The Hamiltonians of the initial stationary solutions~7!,
~20! are respectively given by

H052kQ012pE rdr S f ~A2!A2E
0

A2

du f~u! D , ~40!

H052kQ01pE rdrA1
2A2 . ~41!

Considering the initial state as a composite of the fi
one, the last term in Eq.~39! can be interpreted as a ‘‘nega
tive binding energy,’’ which induces breakup and transfor
to kinetic energy of the fragments.

Supposing again that there areN identical filaments, i.e.,
hn.h, qn.q, we get the following formula for the speed

v2.2S H0

Q0
2

h

qD . ~42!

For practical use of Eq.~42! we chooseN that fixes q
.Q0 /N, and then we can findh for this q by using energy-
Hamiltonian diagrams~see, e.g.,@39#!, assuming the fila-

FIG. 18. Average radius of one-ring solutions vsk. ~a! Satu-
rable medium,a50.1; ~b! Quadratic media,b50. Full and dashed
lines correspond tol 51 andl 52, respectively.
-
n

l

s

ments to be ground-state solitons. Note that in Eq.~42! the
first term inside parentheses is fully defined by the init
conditions, but the second is an implicit function ofN. Since
Eq. ~38! does not depend onN comparison between Eq.~38!
and Eq.~42! leads to a direct estimate of the numberN of
daughter solitons without numerical simulation or stabil
analysis.

For our model systems we present in Figs. 19 and
examples ofv versusk obtained from the numerical simu
lation compared to the formulas given by Eqs.~38!, ~42!. In
both models there is near-perfect agreement of Eq.~38!,
based on angular momentum conservation, with numer
simulation. There is less good agreement with Eq.~42!,
based on the conservation of the Hamiltonian, though
qualitative behavior is correctly predicted. One reason for
discrepancy could be radiation, which we neglected in m
ing these estimates. If so, it would seem that the radia
carries away energy and Hamiltonian more efficiently th
linear or angular momentum. Alternatively, the daugh
solitons may be in an excited state. Certainly, internal sh
oscillations are apparent in the simulations and also in F
17 ~though exaggerated by the superposition of a finite nu

FIG. 19. ‘‘Transverse velocities’’ of filaments in saturable m
dia vsk for l 52, a50.1. Triangles mark results of the numeric
simulation. Full line marks results gained through the angular m
mentum formula, Eq.~38!. Dashed lines mark results gaine
through the Hamiltonian formula, Eq.~42!. Thick and thin versions
of the dashed lines correspond to the cases of 3 and 4 filam
respectively.

FIG. 20. ‘‘Transverse velocities’’ of filaments in quadratic m
dia vs k for l 51, b50. Triangles mark results of the numeric
simulation. Full line marks results gained through the angular m
mentum formula, Eq.~38!. Dashed line marks results gaine
through the Hamiltonian formula, Eq.~42!.
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ber of images at discrete times!. These questions deman
more detailed investigation, which we postpone to futu
work.

The approaches presented above can be in fact applie
any initial field distribution that produces a set of well sep
rated filaments with close intensities, e.g., they can be u
to analyze breakup of Laguerre-Gaussian beams carrying
bital angular momentum.

In physical units Eq.~38! states that the angular dive
gence of the filaments is just the diffraction angle of a be
with radiusr5Rw multiplied by the orderu l u of the phase
singularity,

v.
u l ul
2pr

, ~43!

where l is the wavelength of the light~for the quadratic
case, the SH field has half the wavelength but double theu l u
value, and so the divergence is the same for both fields!. This
link between a linear quantity, the diffraction angle, and
nonlinear phenomenon of azimuthal instability suggests
analogy with the linear approach to soliton theory develop
in @40#.

V. SUMMARY

Ringlike solutions with a phase dislocation nested at
center and exponentially decaying tails exist in self-focus
saturable and in quadratic media. They are quite differ
from the ‘‘classical’’ optical vortex soliton supported by
defocusing nonlinearity@5#, which is a dark spot with a
phase dislocation on a broad, stable, bright background.
namics of the solutions studied here is characterized by
muthal modulational instability which leads to breakup
the rings into a set of the filaments. This sort of dynamics
already been experimentally observed, both in a satur
alkali vapor@30,31# and in photorefractive media@11#. This
shows that these solitary solutions, some properties of wh
can be more or less rigorously studied theoretically, refl
the main features of the dynamics of input beams used
experiments.
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Solitons have been observed to spiral around each o
because of a balance between either in-phase@41# or inco-
herent@42# attraction and repulsion due to nonzero angu
momentum. Here, in contrast, we have nearly free quasis
tons, with dynamics dominated by angular momentum c
servation. Interaction forces may play a minor role in pa
tioning the energy among the filaments, but the daugh
solitons rapidly cease to interact and fly off along straig
line trajectories tangentially to the initial ring without an
spiraling. Note that a side view of the filaments in@30#
shows rectilinear trajectories with no obvious evidence
any spiraling, so it seems possible to achieve such ang
momentum dominated dynamics in practical experiments

Initializing model equations~2!,~19! with self-trapped
beams with phase dislocation~plus noise! we demonstrated
that their initial nonzero angular momentum transfers to
filaments and they fly out tangentially from the initial ring
We developed two semianalytic approaches to the filam
dynamics, in analogy with classical mechanics, one of th
based on Hamiltonian conservation and the other on con
vation of angular momentum. Although both approach
give qualitatively valid estimates for the ‘‘transverse velo
ity’’ ~angular divergence! of the filaments, the latter appea
to be more general and gives also an excellent quantita
agreement with numerical results. The numberN of daughter
filaments is in most situations roughly twice the angular m
mentum indexl , and thus depends relatively weakly on th
other parameters. Taken together, the two approaches b
on conservation laws yield an independent estimate forN in
reasonable accord with estimates based on simulations
on stability analysis, both of which require considerab
computational labor.
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